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Massless phases for the Z, model on the Union Jack lattice 

Francisco C AlcaraziJ: and John L Cardy§ 
f Institute for Theoretical Physics, University of California, Santa Barbara, C A  93106, 
USA 
§ Physics Department, University of California, Santa Barbara, CA 93106, USA 

Received 2 June 1982 

Abstract, We introduce and analyse Z,-symmetric models on the Union Jack lattice. We 
show that these models have the same self-dual structure already known for other Z, 
systems. By performing renormalisation group calculations as well as Monte Carlo simula- 
tions we analyse their phase diagrams, showing in particular that for p 3 5 they exhibit a 
disordered massless phase. 

1. Introduction 

The X Y  model is one of the most interesting two-dimensional models. Despite the 
fact that it has a continuous global U(1) symmetry, which cannot be broken 
spontaneously in two dimensions (Mermin and Wagner 1966), it has a rather peculiar 
infinite-order phase transition (Kosterlitz and Thouless 1973). The low temperature 
phase is distinguished from the high temperature phase by its massless behaviour 
(infinite correlation length) and continuously varying critical exponents. Such a mass- 
less behaviour has been found (Elitzur et a1 1979) even in the case where the symmetry 
is the discrete group Z, (for p b 5 ) ,  for the models whose p + m limit belongs to the 
same universality class as the XY model. 

Recently a very large family of self-dual models involving multi-spin interactions 
was introduced (Alcaraz 1982), enlarging the class of models that exhibits massless 
phases. In particular, a somewhat different class of models with three-body interactions 
in the triangular lattice has been studied in detail (Alcaraz and Jacobs 1982a, b, 
Alcaraz et ai 1983). The U(1) formulation of these triplet models shows an infinite- 
order phase transition from the massive paramagnetic phase to the disordered massless 
Gaussian phase, and the discrete version Z ,  shows three phases for p apt= 5, the 
intermediate phase being disordered and massless (Alcaraz and Jacobs 1982a, b, 
Alcaraz et a1 1983). 

In this paper we introduce and analyse a Z, model involving triplet interactions 
on the Union Jack lattice. This model is the Z ,  generalisation of the Ising model in 
the Union Jack lattice, which is known to be equivalent to the Baxter model (Hinter- 
mann and Merlini 1972). We show in § 2 that this model has the same self-dual 
structure as the preceding models, or more specifically, the Villain version (Villain 
1975) of such models is self-dual for all p .  We show in 0 3 that the present model 
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3816 F C Alcaraz and J L Cardy 

may be represented by a Coulomb gas of vector charges that interact with the logarithm 
of the intercharge distance. In 8 4  by using this Coulomb gas representation the 
renormalisation group equations are derived for the U(1) model. The effect of a 
symmetry breaking field is analysed and other interesting related models are discussed 
in 8 5 .  Finally in 8 6 we present our results from Monte Carlo simulations, which 
agree very well with the earlier analyses exhibiting the three-phase picture for p 2 5 .  

2. Definition and duality transformation of the model 

2.1. Definition of the model 

Consider the Union Jack lattice depicted in figure 1. This lattice is formed by three 
square sublattices, namely sublattice A with spacing a (6  sublattice) and sublattices 
B and C (q5 sublattices) with spacing &a (see figure l), toroidal periodic boundary 
conditions being assumed. We define Z, variables at each point of the lattice: 

sublattice A, 
(2.1) sublattices B and C, 

where O(r ) ,  d ( r )  = 0 ,  2 i r / p ,  . . . , 2 ( p  - l)ir/p. Triangular variables may be defined by 
a product of variables around an elementary triangle involving a point of each sublattice 

( 2 . 2 )  

e'""', 
S ( r )  = (e'*'" 

S ,  = s,s,sk = exp i (4 j  + 0, + dk ) = exp i4!. 

Figure 1. The Union Jack lattice. It is composed of the sublattice A ( 0  sublattice) denoted 
by circles and sublattices B and C ( 4  sublattices) denoted by squares and triangles 
respectively. 

Let us now consider the general Z, model (Cardy 1980, Alcaraz and Koberle 
1980, 1981) defined by the reduced Hamiltonian 

[P /21  

A , = l  
5yt = -1 ( c k,(cos q5( - 1)) 

where the first sum is over all elementary triangles and [p/2] is the integer part of 
p / 2 .  The above model for p = 2 is equivalent to the Baxter model (Hintermann and 
Merlini 1972). The Potts version of the above model 
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where S k  is a Kronecker delta function, corresponds to the particular case of (2 .3 )  in 
which k r  = k 2  = * * = $(l + (-)’)kLpi2l = E ,  and the clock (or vector Potts) version 

(2.5) 

corresponds to the case k ,  = k8,,l.  
The ground states of the above models have a p2-fold degeneracy. These states 

are connected by the non-local transformation which rotates all the spins in one 
sublattice by an angle a ( = 2 7 r / p ,  4 r r / p , .  . . , 2 ( p  - l) ir/p) and all the spins on another 
sublattice by an angle 2ir -a .  Such non-local symmetry may be broken spontaneously 
giving rise to a rich phase structure. 

2.2. Duality transformation 

We shall show in this section that the Villain form (Villain 1975) of the clock model 
(2.5) is self-dual for all p ,  therefore the self-dual structure for the general model 
( 2 . 3 )  follows in a straightforward fashion. 

The partition function for the Villain version of (2.5) is given by 

k 30 2 r r I p - l ) i p  2 T r l p - l ) / p  

exp( - 2 (4,  - 277J1)’) (2.6) 
2, 

z v =  c c 
( ~ ~ = - m }  (e=o) ( b = o )  

where the first sums are the trace over the 8, 4 and J,  fields and the sum in the 
exponent is over all elementary triangles. The integer {J , }  field, defined at each triangle, 
was introduced in order to keep the periodicity of the cosine form which is lost in a 
simple quadratic Gaussian approximation. By using the Poisson summation formulae 
we can write 

2 exp(- 2 k (4, - 2irJr)’)  = 1 f exp( -G+i ld , )  1: (2.7) 
I , (  r ) = -m  ( 2 ~ k ) ” ~  i ,=-m 

where I ,  is an integer field defined in the triangles. By writing the field 1, in terms of 
two other fields 1, = pp, + v I  with --CO < p ,  < CO, 0 d v c  c p  - 1 the partition function takes 
the form 

where we have dropped a harmless constant. To proceed we must perform the 0 and 
4 summations; in order to do this we must isolate (integrate by parts) the 6’ and 4 
variables, by writing 

where v * ( r )  (see figure 2 )  is defined as the sum (modp) of v, variables attached to 
the triangles which have the point r as a corner, 

Vtl + v,+* * * + v,, (mod p ) ,  
Vr, + v12 + vr9 + vrlo (mod P ) ,  

4- sublattice, 
hublat t ice .  

(2.10) v*(r )  = 
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Figure 2. A point in the 6 sublattice is surrounded by eight triangles while a point in the 
0 sublattice is surrounded by four. 

By inserting (2.9) in (2.8) and performing the @-4 summations we obtain 

zV= C C e x p - - C ( ~ p , + v , ) ~ ~ p ~ ~ [ v * ( r ) ~  (2.11) 5 p - 1  1 
{ p , = - 0 )  { v , = O )  2 k  A r 

where Sk is a Kronecker delta since v * ( r )  is defined modulo p .  We must now define 
dual fields so that the 6 constraints 

v * ( r )  = 0 Vr, o s  U t  c p  - 1 vt, (2.12) 

are satisfied. The dual variables i ( r ) ,  & ( r )  ( 6 ( r ,  ) & ( r )  = 0 ,  2 ~ / p ,  , . . , 2 ~ ( p  - l ) / p )  are 
defined on the same lattice subject to periodic boundary conditions. 

Triangular dual variables are defined in the same way as (2.2), 

6, = 61 + $2 + 4 3 .  (2.13) 

It is easy to verify that in terms of the dual variables the solution of (2.12) is given 

(2.14) 

where the sign of E ,  alternates from one triangle to the other. Conversely given a v, 
configuration that satisfies (2.12) we can find a dual i, 6 configuration: 

by 
2 

vt = E ~ ( P / ~ T ) & ,  (mod p )  € 1  =1, 

(2 .15a)  

P 

(2.156) 

in which v I ( x ,  y )  is the variable attached to the triangle whose centre is located at 
(x, y) .  It must be clear that the infinite string in equations (2.15) may be modified by 
the addition of any v * ( r ) .  The correspondence between U, variables and the dual 
variables g, & is not one-to-one, because there are many I!, 6 configurations (related 
by the non-local symmetries discussed earlier) that produce the same v i  configuration. 
In replacing the U, summation by i, 4 summations we will therefore commit an 

3 x 1 ( v r (x  + n  ++, y - r z  -+)+v,(x + n  +q,  y - n  --:)I 
n =o 
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overcounting, but it is not difficult to convince oneself (Savit 1980) that this overcount- 
ing is uniform. Thus, apart from a harmless constant, (2.11) may be written as 

(2.16) 

in which the transformation pl + - p , ~ ~  has been made. By comparison with equation 
(2.6) we have then obtained that (apart from an unimportant constant) 

Zdk) = Z d O  (2.17) 

which states that the Villain model is self-dual for all p ,  the dual inverse temperature 
given by k' = p 2 / ( 2 . r ) ' k .  

We can in a straightforward fashion perform the duality transformation for the 
general model defined in (2.3). We obtain the same self-dual structure already known 
for the other Z, systems mentioned in the introduction of this paper. For all p the 
Potts version defined by equation (2.4) is self-dual, and the clock version (2.5) is 
self-dual for p < 5 .  

To conclude this section it is useful to consider the case in which the symmetry is 
continuous (Zp + Ul).  The 8 and 4 variables become continuous angles 0 s 6,4 s 2 r  

and the partition function in the Villain form is given by 
P" 

where the integrations are the trace of the 6, 4 angles and 4r is defined in the same 
way as (2.2). By using the Poisson formulae (see equation (2.7)) and isolating the 6 
and 4 angles as in equation (2.9), we can perform the 8-4 integrals, obtaining apart 
from a constant term 

(2.19) 

where v * ( r )  is defined by equation (2.9). We now introduce dual integer variables 
--CO < g ( r ) ,  $ ( r )  < 00 at each point of the lattice so that the Sk requirements of equation 
(2.19) are satisfied by setting 

(2.20) 

where Jr are the triangular dual fields defined by (2.13) and alternate in sign from 
one triangle to another. By inserting equation (2.20) in (2.19) we obtain the dual form 

1 

2 
VI = EIV& = E t ( i i  +$, +&), 81 =1 ,  

= 
z v =  - c f e x p - g x  (6: +dl + q ~ ) 2 .  (2.21) 

{scr)=-m) {J(r)=-m) A 

This form will be useful to obtain a charge gas representation for the model. 

3. Coulomb gas representation 

We consider here the model with continuous symmetry. For the case in which the 
symmetry is discrete we obtain in a straightforward fashion a double gas representation 
in the same way as the two-dimensional Z ,  model in the square lattice (Kadanoff 
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1978, Elitzur et aI 1979). The results of the previous section show that after duality 
the partition function can be written 

where we have used the Poisson sum formula. The integers m,, md are respectively 
defined on the sites where-th? original angles 8, 4 were defined. The result of the 
Gaussian integration over 8, 4 can be written in matrix form, 

where 

with ci = cos(kia/2). The integration is over the first Brillouin zone jkij < r / a .  
Equation (3.3) is not well defined, however, since the integrand has singularities in 
the infinite volume limit. 

There are two such singularities which are not equivalent by a reciprocal lattice 
vector: at k = 0 (c1 = c 2  = l), and at k = (7r/a, r / a )  (c1 = ? 2  = 0). The latter singularity 
occurs only in the (4,  4 )  matrix element. 

In order to have quantities which are finite in the thermodynamic limit, we may 
consider 

a* d2k (c :+c i ) (e lk ' r - l )  
c: + c: - 2c:c: G k e ( r )  = Gee(r )  - Gee(0) = 4 I 

d2k (-2clcz) e 'k ' r+c:+c:  
Gkb ( r )  = G e b ( r )  + i G e e ( 0 )  = 

c:+c:-2c:c: 

8 (27r)2 c:+c:-2c:c:' 
a 2 1  d2k ( e l k ' r - l )  

G b b ( r )  SE Gmb(r )  - A(r, O)G,,(O) = Air, 0 )  - - 

(3.4) 

(3.5) 

(3.6) 

In (3.6), A(r, r ' )  is defined to be +1 if r, r' are on the same sublattice, and zero 
otherwise. This is to take account of the fact that G b 4 ( r  - r ' )  vanishes when r,  r' are 
on different 4 sublattices. Note also that the substitution k, + k, + (7r/2a) shows that 
Gd, (0 )  = i G e s ( 0 ) ,  even in the finite volume system. 

Isolating the terms in (3.2) proportional to G e B ( 0 ) ,  we have 

Gee(0) Cme(r )m(r ' )  + h b ( r ) m + ( r ' ) A ( r ,  r ' )  - me(r)mb(r') l  (3.7) 
r.r' 

where E ( r )  = f 1 according to which sublattice r lies on. This expression suggests that 
we define a complex, or vector-valued, vortex charge 

m ( r )  = m e ( r ) - i ( l  + i & ( r ) ) m 4 ( r ) .  (3.9) 
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In the infinite volume limit, as Gee(0)+ +a, the configurations with finite energy must 
satisfy the charge neutrality condition E r  m ( r )  = 0, or, in terms of real quantities, 

The fundamental vector charges are illustrated in figure 3(a) .  Similar charge 
lattices arise in the theory of anisotropic two-dimensional melting (Ostlund and 
Halperin 1981). 

Figure 3. Fundamental vector charges. ( a )  corresponds to the charges (3.9) and ( b )  to 
the charges (5 .4) .  

The asymptotic behaviour of the G'(r )  as r + c o  is evaluated in the appendix. 
There we find 

( 3 . 1 1 ~ )  

(3.116) 

( 3 . 1 1 ~ )  

where we have dropped terms of O ( U / ~ ) ~  which are irrelevant in the RG analysis. The 
value of C is estimated to be 0.19. 

With the approximations (3.1 l), the Coulomb gas Hamiltonian takes the simple 
form 

(3.12) 

where the initial values of the vortex fugacities are given by 

In Ye = -4n2kC, In y6 = -2n2kC. (3.13a, 6 )  

4. Renormalisation group analysis 

Following Kosterlitz (1974), we consider an expansion of the Coulomb gas partition 
function in the vortex fugacities ye, y6, making the approximations (which should not 
affect universal quantities) of treating the lattice as a continuum, with a hard core 
repulsion between the vortices. In this case, the radius of this hard core depends on 
the nature of the vortices. For two 8 vortices it is a, for two q5 vortices it i s d %  (4 
vortices on different sublattices do not interact), while for a 0-4 pair it is a / J 2 .  
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To lowest order, the partition function is 

The change a + a (1 + 61) (61 K 1) may be compensated by an appropriate change 
in ye, y6,  This leads to the RG equations 

The O(y,y,) term in ( 4 . 2 ~ )  arises because there are some configurations where a 
6 vortex and a q5 vortex approach within a distance a (1 + S l ) / d $  of each other, 
Such configurations will be counted as q5 vortices in the renormalised partition function 
(vectorially, a e vortex plus a q!~ vortex can make a q5 vortex). This will come from 
a region of space of area 2 ~ ( a / h ) ~ 6 1 ,  and the appropriate Boltzmann weight is 
exp[-2.rrk l n ( l / h ) ] ,  Thus A = .rr exp(nk In 2). Similarly, a configuration of two q5 
vortices (on different sublattices) generates a 6 vortex under renormalisation, so that 
B = 1 ~ 1 2 .  

The renormalisation of k, (4.2c), arises because neutral pairs with separation 
<a(1 +Si) screen the interaction between other charges. The magnitude of these 
terms may be inferred from the Kosterlitz (1974) result, taking into account the 
different core radii and interaction strengths. Thus we find that D = 
-4.rr3k2 exp(-rrk In 2), E = - 8 ~ ~ .  

The RG equations (4.2) are valid only to O(y2), but this is sufficient to discuss the 
critical behaviour. For sufficiently large k we renormalise onto the Gaussian model 
ye  = y4 = 0. As k decreases, eventually y becomes relevant and the q5 vortices unbind. 
The second term in (4.26) will force the 8 vortices to unbind at the same time. This 
is because a 8 vortex may be viewed as a bound state of two q5 vortices, so that the 
self-interaction of the e vortices is screened. Close to the critical fixed point .rrk = 2 
we see from (4.2b) that ye  goes exponentially towards a.rry; so the ye terms in (4.2a, c )  
may be neglected. (Note that initially y = y;.) The resulting equations are just those 
of the usual XY model. 

The critical separatrix has the form 

(4.3) 

in the linear approximation. The critical temperature T,= k,' for the Villain U(1) 
model is estimated by the intersection of the fugacity given by (3.136) and the critical 
separatrix (4.3). This gives us 

2 
y 6 =  1 / n - 2 / k 7 ~  

T, - 1.30. (4.4) 

The asymptotic behaviour of the correlation functions for T < T,  may be computed 
within the Gaussian model. We find 

( 4 . 5 ~  j 

(4.5b) 
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where 7 = 1/2rk(co),  k ( c o )  being the renormalised value of k at infinite length scales. 
At T,, q = a  as for the usual XY model. 

The estimated temperature (4.4) is quite useful to determine an upper bound on 
the critical p c ,  such that the discrete Z ,  model with p > p c  must have three phases. 
Following Elitzur et a1 (1979) and Alcaraz et a1 (1983), we can obtain in the Villain 
formulation rigorous inequalities which state that correlation functions of ordered 
(disordered) variables are stronger (weaker) in the Z, model than in the U(1) model. 
Using these inequalities, and the fact that the Villain model is self-dual, standard 
arguments (Elitzur et a1 1979, Alcaraz et a1 1983) imply that for p >2.rr/T, (where 
T, is the critical temperature for the U(  1) Villain model) the discrete Villain Z, model 
should have three phases, the intermediate one being disordered and massless. By 
using the estimate (4.4) we obtain 2.rr/Tc=4.8. Because the Boltzmann weights of 
the clock and Villain model are almost identical, we believe that also for the clock 
model for p 2 5 we should have three phases, which agrees very well with our Monte 
Carlo simulations presented in 0 6. 

5. Symmetry breaking field perturbations 

Another interesting point to be studied by using renormalisation group ideas is the 
effect of symmetry breaking fields in the scenario hitherto presented. Those fields 
are introduced by adding to the Hamiltonian a term 

h: cosp$+h,”  1 cospd. 
r e  e r c d  

However, an equivalent but more useful way to introduce this effect (JosC et a1 1977) 
is to write the partition function 

where 8, are continuous variables and the integer fields ne and n6 are defined on 
the 8 and ~5 sublattices respectively. The parameters y i  and y,” play the role of 
symmetry breaking fields; in fact, as y : ,  y : + O  one obtains the U(1) model with a 
small symmetry breaking field, but, on the other hand, in the limit y:, y , ” + l ,  the 
summation over the integers ne, nd forces the angles to be multiples of 2.rr/p, and 
therefore one obtains the Z ,  model. 

In the low temperature limit, vortices are irrelevant, and U may be replaced by a 
Gaussian. The Gaussian integration over 6 and q5 then leads to a Coulomb gas with 
the selfsame form as (3.121, with the replacements k +p2/4.rr2k, me +ne,  rad +n6. 
The discrete excitations should therefore be irrelevant for renormalised values of 
k - ’ > 8 . r r / p 2 .  Consequently there will be a portion of the Gaussian line for which 
both vortices and discrete excitations are irrelevant if p >p, = 4, Our Monte Carlo 
simulations (see § 6 )  show that the discrete model ( y i ,  y :  + 1) has a massless phase 
for p >4 ,  and hence the strip of fixed points extends from the Gaussian model 
( y i ,  y ;  = 0) to the discrete model for p > 4  as sketched in figure 4(a).  
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x x x x  x x x x x x x x  ;a; ; ; x x x x x x x 

L, c b?\ 4 
r 

t I 
0 1 

Figure 4. Phase diagrams. The phases denoted by F, P and G are the ferromagnetic, 
paramagnetic and massless Gaussian respectively. The points represented by x are points 
with power law decay for the 8 and q5 variables. ( a )  corresponds to the models(q0 +I$ + 4 )  
with p ~ 5 ,  qc2 and (6)  to the model c ( q @ + & + I $ )  with q S 3  and p > 2 4 2 q .  The phase 
GF that appears in ( b )  is ordered in the 0 variables but has a power law decay in the q5 
variables. 

The same type of analysis may be applied to models with an interaction of the form 

v (qe  + 4  + 4 )  (5.3) 
where q is a positive integer, Following through the analysis of the previous section, 
we see that the vortex gas is unchanged by this modification, while by a change of 
variables qe + 8, (5.1) is modified by the change ng + q-'ne.  We end up with a Coulomb 
gas of the form (3.12),  but with the complex charges 

n ( r )  = q - ' n e ( r ) - & l  +i&(r))n6(r) .  (5 .4)  
The fundamental vector charges for the case q = 2 are shown in figure 3 ( b ) .  Note 

that for q 2 2 ,  the 6' charges couple more weakly than the charges and thus unbind 
first, at a renormalised k- '  = 4.rrq2/p2. Since the vortices still unbind when k-'  = ~ / 2 ,  
we find that there is a phase in which the 0 variables are ordered and the 4 variables 
disordered for small symmetry breaking field perturbations with p > p c  = 2&q. When 
the e charges unbind, they are able to screen only the real part of the 4 charges. The 
imaginary parts _of the d charges still interact logarithmically, with a charge reduced 
by a factor 1 / J 2 .  Therefore, there is in principle a second transition when the d 
charges unbind, at k-' = 16.rr/p2. This will be distinct from the e transition for q 2 3 .  
Thus the full model with q > 2 and small symmetry breaking field perturbations with 
p > 2d2q should exhibit three transitions in all. In the low temperature phase both 
(e") and (eld) will be non-zero; in the next phase only (e") will order, and the correlation 

) will have power law decay, followed by a completely massless 
phase, then a high temperature massive phase. 

One question that naturally arises is whether these conclusions based on small 
breaking field perturbations in the Gaussian model still persist for the truly discrete 
model (A:, A: +a or y i ,  y: + 1). To consider this question we pay attention to the 
case in which q / p  and p / q  are not integers. In this case it is easy to convince oneself 
that the partition function for the discrete Z ,  model U (q6' +4  + d )  is the same as for 
the discrete Z, model with q = 1. Hence, as our numerical calculations presented in 
the next section indicate, we expect only two phase transitions for the truly discrete 
model. Therefore we believe that at sufficiently large breaking field strength two of 
these phases (that appear for small breaking fields) collapse, giving rise to the phase 
diagram sketched in figure 4 ( 6 ) .  

function (eidcri e-16(r') 
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6. Numerical analysis 

We have performed Monte Carlo simulations for the clock models defined in equation 
(2.5). We have employed the Metropolis updating algorithm (Metropolis et a1 1953) 
and a variant of the heatbath algorithm of Creutz et a1 (1979a, b) whenever the large 
number of degenerate states render the first method inefficient. 

Thermal loops were obtained to give a general overview of the phase structure of 
the model. We initialise the system in an ordered state at a high inverse temperature 
K =KO, and the system is heated in small steps AK until K = 0 is reached, where we 
invert the procedure by cooling the system until K =KO.  

A single Monte Carlo iteration of the entire lattice is performed for each step in 
K,  and averages of interest are measured. It is clear that the system (with only a 
single iteration) will not have ‘time’ to reach an equilibrium state in such a simulation. 
However if the the variation in K is small enough the system will be close to equilibrium 
except near a phase transition in which the relaxation time increases and the system 
becomes far from equilibrium. Therefore the thermal loops will show hysteresis near 
a critical point. 

In figures 5(a ) - (e )  we show some examples of thermal loops for the case Z2, Z3, 
Z4, Zs and Z, of the Hamiltonian (2.5) for a lattice of 1600 points. We have measured 
in each Monte Carlo step the internal energy per triangle 

where Na is the number of triangles of the lattice. We see clearly that the Z2, Z3 and 
Z4 models show only one phase transition while Zs and Z7 show two phase transitions. 
We must stress that because of the large degeneracy of the Hamiltonian in each step 
we accept or reject a chosen spin by testing the entire group before going to the next 
spin. 

We can obtain a quite accurate value for the critical temperature by observing the 
time evolution of a mixed state in which half the system has been initialised with 
random values and the rest ordered. For details of this technique we refer to Creutz 
et a1 (1979a, b), Alcaraz and Jacobs (1982b). Our numerical results give th_e self-dual 
temperatuss for p s 4 to an accuracy of zk0.005, that is k; = l n ( l + J 2 )  1: 0.441, 

fixed around kI = 1 while the second one scales with the inverse gap, that is, kII = 
y/ ( l  -cos 2 r l p )  with y ~ 0 . 8 6 .  

In order to determine the order of these transitions we observe, at the critical 
temperature (Creutz et a1 1979a, b, Alcaraz and Jacobs 1982b), the time evolution 
of an initially ordered state and an initially disordered state. In figures 6(a) ,  ( 6 )  we 
show such time evolution for the Z3 and Z4 systems respectively, which indicates the 
existence of latent heat which therefore renders the transition to be first order. For 
p = 2 as well as for p 3 5 the time evolution does not show such gaps, which indicates 
that the transitions are continuous (no latent heat). 

To verify the massless behaviour of the intermediate phase we measured the 
magnetic susceptibility per spin (Alcaraz and Jacobs 1982b), for points in such a phase 
for several lattice sizes. We observe that this quantity grows with the lattice size and 
does not saturate, which is consistent with the correlation length in such a phase being 
infinite for the infinite system. In figure 7 we show that the pure spin wave behaviour 
fits well with the behaviour in the intermediate phase for the ZI9 model. 

k c  - 2  - 3 ln(J3 + 1) = 0.670, k i  = 0.881. For p 2 5 the first transition practically remains 
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Figure 5. Thermal loops. ( a ) - ( e )  correspond to 
the clock model ( 2 . 5 )  with symmetry Z2, Z3. Z4, 
Zs and 2, respectively. 

K 
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Figure 6. (a )  Time evolution at the critical temperature of an initially ordered state (lower 
points) and an initially disordered state (upper points) for the Z3 model with 3600 spins. 
The unit of time is represented by one Monte Carlo iteration. The result shows two 
apparently stable states at the critical temperature indicating a first-order transition. (6)  
Same as (a )  for the Z, model with 4900 spins. 
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08 
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04 

0 2  

0 1 2 3 4 
K 

Figure 7. Heating branch of a thermal cycle for the Zig model. The continuous straight 
(curved) lines represent the first term in a high temperature expansion (spin wave approxi- 
mation). 

The same numerical analysis performed hitherto for the clock model (2.5) has 
been done for the clock version of the model (5.3) with q = 2. We have obtained, as 
in the case q = 1, three phases for p z 5 ,  which agrees with our earlier renormalisation 
group analysis. 
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Appendix 

We compute the asymptotic behaviour of the Green functions G ' .  Consider G b e ( r ) ;  
the leading behaviour as r + 0;) is given from the vicinity of the singularity at k = 0. 
Expanding the integrand in the neighbourhood of this singularity, 

The others are evaluated similarly. To see that the constant term is universal, consider 
for example 

a ' /  d2k (c:+c:-2clc2)  e i k ' r  GLe(r )  + 2G&, ( r )  = - - 2 2  ' 4 ( 2 d 2  c:+c:-2clc* 

It is easy to see by power counting that this integral is O(a/r )2  as r + CO. Tosstimate 
C, we may use the fact that, as may be shown by direct integration, G & , ( J 2 a )  = -b, 
and assume the form (3.1 IC) to be correct down to this separation. This gives C = 0.19. 
This may be checked by observing that G & ( u / h )  =Q, which leads to C = 0.18. 
At the level of accuracy we need for the RG equations, this error is satisfactory. 
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